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ABSTRACT

The main purpose of the present work is to develop a theory for multiple knowledge systems. A

knowledge system could be a sensor or an expert system, but it must specialize in one feature. The

problem is that we have an exhaustive list of possible answers to some query (such as "What object is

it?"). By collecting different feature values, we should, in principle, be able to give an answer to the

query, or at least narrow down the list.

Since a sensor, or for that matter an expert system, do not in most cases yield a precise value for

the feature, uncertainty must be built into the model. Also, we must have a formal mechanism to be

able to put the information together. We chose to use the Dempster - Sharer approach to handle the

problems mentioned above.

We introduce the concept of a state of recognition and point out that there is a relation between

receiving updates and defining a set valued Markov Chain. Also, deciding what the value of the next

set valued variable is can be phrased in terms of classical decision making theory such as minimizing

the maximum regret. Other related problems are looked at.
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INTRODUCTION

The purpose of the present work is to show how taking independent and very diverse evidence,

we can piece things together to arrive at an answer to the question: "What object is it?". We will take

the Dempster - Shafer approach to put the evidence together. Such an approach has recently been

taken in expert systems, see [2], [3J, and [4]. However, to the best of this writer's knowledge, the

results shown here are original. We start out with a simple example.

Consider the following data which assigns masses to subsets of(Bird, Plane, & Superman}

according to the velocity observed:

VELOCITY B P S {BP} {BS} {PS} {BPS}

0 - 100 .5 . 1 •1 .2 .04 04 .02

101 -200 0 .4 .1 0 0 .5 0
201 - 500 0 .5 .1 0 0 .4 0

> 500 0 . 1 .7 0 0 .2 0

NOTE:

• Birds don't fly with velocity > 100.

• Superman likes to fly at over 500 but he can fly at any speed he wants to.

It should be noted that the sum across each row is 1. The interpretation of the results says, for

example, that at velocities exceeding 500 mph, the expert believes that the object is Superman. That

expert doesn't totally rule out the possibility of plane as he assigns a mass of. 1 to that event, and also

that expert is somewhat unsure if the object is Plane or Superman and therefore, he assigns a mass of

.2 to that aggregate. Note that we do not have Probability of {PS} be the sum of the Probability of P

and of S. Masses assigned to sets that are not singletons denote the uncertainty of the expert. For

example, .02 assigned to {BPS} reflects the degree of total ignorance that the expert has regarding

what the object is when the object travels at less than 100 mph. Such a mass assigned is typical of the

Dempster - Sharer approach to handle uncertainty in expert systems. See [10].

We now write down the data relative to observed color:

COLOR B P S {BP} {BS} {PS} {BPS}

SILVER .05 .6 .05 . 1 0 . 15 .05
WHITE .1 .O5 .5 .O5 .15 .O5.1

RED .1 .1 ._ .2 .2 .2 .1

BLUE .1 .1 .1 .2 .2 .2 .1
RED-BLUE .04 .04 .8 0 .05 .05 .02

OTHER .6 .1 0 .3 0 0 0

NOTE:

• Red and blue generate the same (conditional) mass

• A gray bird may appear silver

• Superman wears red and blue but from some angles he may appear all red or all blue

• When flying at certain speeds, Superman may appear as a white or silver streak

• Color other than red, blue, white, silver rules out Superman

These two tables sum up the information collected from the experts. What we would like to do,

of course, is to put these two pieces of evidence together.
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CONCEPTS AND NOTATIONS

We now will formally define the concept of a mass function. A mass function is a function from

subsets of the frame of discernment O into [0, 1] satisfying the following conditions:

(i) m(_)=O

2 m(A)= 1(ii)

If ml & m2 are two mass functions, we define

(rnl_rn2)(C)- 2

AAB=C

Where k is the conflict

where the sum is over all subsets of G

ml(A)m2(B) [ (1 -k)

k - 2 ml(A)m2 (B)
AAB=f_

The operation defined above defines how to put information together. If two knowledge systems

generate mI & rn2, rnl E9 m2 is the mass generated by combining the two knowledge systems, see

[10]. For a very readable interpretation of the combination rule in the setting of databases, see [12].

The belief generated by m is defined by

Bel(A) = 2 rn(B) overallsetsBsuchthat BcA. Alsowedefinetheplausabilityby

P/s(A) = 2 re(B) over all sets B such that BAA _

Now if the 1 th sightingtakes place at time t l , set dt l -- t l - tl_I

Obviously, dt I denotes the elapsed time between sightings. Assume that we have a weight

function _ (.) satisfying

(i)O<k(dtl)<-l, dt I >0

( ii ) X ( dt l ) non decreasing as a function of dt l

We use weight to adjust masses. There are two ways to adjust

ml(.) =ml(')

a) ml(o)=X (dt l)m (.)+(1-), (dt t))m I t(o)
l

b) ml(') =X (dt l)m (o)+(1-,k (dt l))m t l(.)
l

If __is high i.e., dt l high, go with the current observation

If _ is low i.e., dt l low, go with the accumulated data.

Note that the first update is Markov - like as it only uses the mass collected on the previous sighting.
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For our example, we could define the weight function by:

d,l / aooir _<3°°1,k ( dt I ) = [ otherwise J

That is, after 5 minutes, forget the previous observations and assume that a new object is being

observed. The rationale for this is that the data has become too old to be reliable.

Going back to our example of bird, plane, and Superman, assume we have three sightings:

SIGHTING TIME

1"00 p.m.

1"01 p.m.

1"29 p.m.

dt t

60

1740

VELOCITY

101-200

201-500

O- 100

COLOR

WHITE

WHITE

OTHER

The combined masses, not time adjusted are given below:

SIGHTING

1 m z(')

B P S {BP} {PS}

.7750 .1 0

{BS}

.125

{BPS}

0

2 m2(-) 0 .8101 .0886 0 0 .1013 0

3 m_(.) .811 .1024 0 .0866 0 0 0

The combined masses, time adjusted are given below:

SIGHTING B P S {BP} {BS} {PS} {BPS}

1 m I (') 0 .775 .1 0 0 .125 0

2 m 2 (°) 0 .78202 .09772 0 0 .12026 0

3 m3(.) .811 .1024 0 .0866 0 0 0

NOTE: m 3 is not really time adjusted as sightings are more than 5 minutes apart.
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Computingthebelief,at eachsighting,with respectto thetimeadjustedmasswehave:

SIGHTING

1

2

3

OBJECT

The rationale for

Bel (.)

0
.775

.I

0
.78202
.09772

Be! (-_ .)

1
.1

.775

I
.09772
.78202

Bel (.) - Bel (-,.)

-1
.675
-.675

-I
.6843
-. 6843

.811
.1024

0

.1024
.811

1

.7086
-.7086

-I

CLASSIFICATION

the table above is that Bel (.) - Bel ("1 .) measures how much a specific object

exceeds, belief- wise, its competition. This criterion was already used in [8]. Thus the conclusion is

that a plane was observed on the first and second sighting and a bird was observed on the last sighting.

This example shows that there will be a payoffin studying a multi-knowledge systems setting. We

also remark that a similar, but somewhat more complex approach could be used to obtain classification

seauences.

MESHING THE INFORMATION COLLECTED FROM MULTIPLE KNOWLEDGE SYSTEMS

In this section, we consider the composition rule to be defined by the numerator only of

(m l (E)rn 2 ) (C). (Thus the empty set may pick up mass).

We now shift somewhat our perspective. Consider Knowledge Systems KS l, KS 2, ... KS n

i with a probability aKSj reads the J th feature and interprets its value to be fj J

It is important to keep in mind that in this setting, each knowledge system specializes in recognizing a

specific feature.

Thus, KS i defines the mass mj On O by

rnj (Aj i ) - aj i where

i
A.. denotes all objects of (9 whose jth feature has value fj

J_

After we have interrogated KS I, KS 2, ..., KSq possible answers are in sets

A lt I A A2t 2 A ... A Aqtq. Let X a be set-valued variables whose values are Alt I A ... A Aqtq

(t 1.... , tq range over all possible values of the corresponding features). Xq indicates the current state

of recognition. Xq may be viewed as a random set [9].

We have shown that Xq forms a (non-stationary) Markov chain. In fact, the transition

probabilities are given by

1 = "'" Aq+ltq+l t I "'" Aqtq mq +1
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Where the sum is over sets Bq+l, i such that

Atq A...A A ABq+I, iq tq

If

= Alq A...A Aqt q A Aq+ 1 tq+ 1

Pr(X-AlqAAA  q)-- q(Al lAAAq q)then

1
B

A isoftheformAltl A ... A Aqtq A Aq÷ltq÷1 and B isoftheformAlul A ... A Aquq

with B A Aq+ltq+l -A

Since Xq forms a Markov Chain, a study of absorbing sets as well as entry and exit times could

be made. We choose not to deal with these rather general questions but rather to pause some specific

problems such as: what is the probability of realizing for the first time, as we interrogate KZq ÷ 1,

that the answer is not in the frame of discernment. What is the probability of getting no information

from KSq 41? (Of course we assume that KS 1, KS 2, ..., KSq were already interrogated). The

answer to such questions has been derived and is given below.

Pr (Realizing for the 1st time at time q ÷ I that answer not in frame of discernment)

where the sum is over all local elements Bq ÷ 1, i of mq ÷ I such that

AtttA AA =_ yet A t A...AA _"'" qtq Bq+l,i t I qtq

That is, the averaged Belq ÷ 1 of being outside the range of Xq when KSq + I is interrogated.

Pr(NoInfo. fromKSq+l) =Z mq+t(Bq+l,i) pq(A)

where the sum is over Bq + 1, i superset of A, and A is of the form A ltl A... A Aqtq

Using the transition probabilities we have

A...A Altl...X 1 = Alq )Pr Xq+ 1 -_ Aq+ l tq+ 1

where the first sum is over all BA A Iti = A2t2 A A Itl, and the last sum is over all B such that

BAAqtqA... AAIQ =Aq+ltq+l A... AAIQ

All of this points out that it is very important to carefully evaluate Xq
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TRUNCATING THE INFORMATION

Let {A1, A2, ... } be distinct focal elements of ml, m2, ... We can view KSt as confirming

Ai to the degree (lti Let ati* be the largest ati for t fixed (i* depends on t).

Now view KSt as confirming Ai* to the degree ati* and ignore the rest of the information

yielded by KSt (i.e., take only the highest confirmation ofKSt). If sl, s2, ... sk supported Ai*,

Ai* is supported to the degree 1- (i-s1) (1 -s2) ... (1-Sk)

If the resulting mass on A i is

Evit (At) = pi, weset Evii {A 1,...A n} = r i, where Pi + rt = 1

The rationale for doing this is to trust our estimate of the mass on each Ai, which came from the

highest degrees of confirmation, and to ignore the rest, i.e., spread the rest of the mass on all the

possibilities.

It can be shown, see [1] that

Bel (A j) = Kpj H ri
i _j

Where

I i

At stage q + I, we then pick Aj maximizing Bel coming from ml, rn2, ... mq + l. In this way,

prior information given by ml, ... mq, as well as the current information yielded by mq + 1, is taken

into account.

We can extend this to keeping the two highest confirmations KSt, as mentioned ealier, assigns

ati* to Ai _"and ffthe second highest ati, call it _tj*, is assigned to

{Ai / i:_ i*} (spread around the 2nd highest)

The rest 1- ati* " [Jtj* is assigned to {At, ... An}

It can be shown, see [1], that

j;ti j=t

j i ;

Wherepi ÷ ci 4- di = 1.
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APPLYING CLASSICAL DECISION THEORY TO SELECT VALUES FOR_Xq + I

If KSI .... KSq yield enough information so that

Pr(X a Altl A'''AA )=laq(AltlA'"AA )
= q tq q tq

can be trusted then, maximize over Bq +l, i the following expression:

q _q q tq

Belief q + 1 is generated by rnl _ "'" _ mq+ 1

We view this as making a decision in the environment A1 tl A ... A Aqtq assuming the

probabilities are known. Picking the alternative Bq +1, i yields a payoffof

Belief q + 1 (A i tl A... A Aqtq A Bq + I, i ) and we maximize the averaged payoff. What if

KS1,...KSq are not too reliable? We know the patterns but we are not sure about their probabilities.

Pick the alternative Bq + 1, i so as to maximize the minimum of

( Aqtq ) ( tlA"" qtq J_ Bq+1, i)Belq+1 AltlA...A A Bq+I, i -Belq+ 1 A 1 A A A v

Here the minimum is taken over all environments A IQ A ... A Aqtq • BeI q ÷ 1 is generated

by mq ÷ 1. The motivation is that picking the minimum represents the worst environment for payoff

of alternative Bq ÷1, i over competing alternatives. Picking the maximum represents then the

maximum gain. This approach is pessimistic in nature (going to the worst environment and then

making the best of a bad situation). At the other end of the spectrum, the maximum of the maximum

represents the optimistic attitude.

Picking a convex combination of the two represents a compromise.

Another approach yet is to minimize the largest regret. Let

T(A1 tl A 'AAqtq)=Di(Al tl A''" AAqtq) - MaXDi(AltlAi "'" AAqtq)

Where Di denotes the above difference of beliefs. T measures the regret of picking the

alternative Bq+1, i over the best alternative (T.__ 0) Picking the minimum over the environment,

produces the largest regret. Picking then the maximum, minimizes that largest regret.
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DECISION MAKING AND TRUNCATING THE INFORMATION

Here, we believe that some patterns are a definite possibility. We also want to ignore the rest of

the patterns, also we do not trust any probabilities functions associated with KS1, ... KSq. Going

back to the previous section, we see that the four previou s algorithms are well defined if we restrict the

environments Altt A ... A Aqtq to a fixed set P. We now refine this by allowing P to be a fuzzy set.

Thus

P 2 aq(t 1... tk) 1 A1 A-- tl A ... Aqt q

Here aq(t 1 - t}} denotes the degree of membership of

A l tlA...AAqtq in P.

We now must define an appropriate fuzzy set of payoffs. In the case of an optimistic or

pesimistic or a somewhere in between attitude, we consider

) [ ( ) ( )JCi(P =2aq(tl...t k) Betq+l Altl A'''AAqtqABq+l,i -Belq+l AltlA"'AAqtqAj_iv Bq+l,j

We need to be able to take the minimum or maximum element of a fuzzy set.

If A= __a il at Set

rd(X)= Min {a i ai---X}

The minimum of A is defined as

't_(X)d, k
0

This coincides with minimum in the crisp case and is defined in [11] Again the 4 algorithms

defined earlier now make sense.

THE GENERAL CASE

We interrogate KS1, ... KSq and split the corresponding patterns into disjoint blocks Pk.

The blocks could correspond to classifications such as highly likely, likely, somewhat likely patterns,

etc .... We also assume Pk are fuzzy sets (is Altl A ... A Aqt a highly likely?). We set

Pj = 2 aq(tl.., tk},j [ AltIA'"A Aqtq
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Also we assign masses to each block, reflecting the weight put on the blocks (this reflects the

trust put on the corresponding patterns in the class). Let

m(Pi)=aj

The first criteria, for example, would maximize over the alternatives Bq ÷ l, i

_'__ li(P_)m(Pk) where l.(Pk), is the minimum of the fuzzyset
k

XTa Belq+ 1 A 1 A A -Belq+ 1 AltlA...A Ai_jBq+l, j_- q( t I ... tk),k tl A''' Bq+l,i

It is clear that the other three algorithms generalize to this situation. The sets are replaced by

"averages" and the minimum and maximum need to be taken over fuzzy sets, as explained earlier. For

other methods available in the setting of decision making, the reader is referred to [5], [6], and [7].

TOWARD A GENERAL THEORY OF MULTIPLE KNOWLEDGE SYSTEMS

The previous discussion points out the importance of building a formal theory for the multiple

knowledge systems setting. Our present work generalizes the situation described in [8] and

constitutes the first steps toward such a theory. Our basic assumptions are:

(i) Our knowledge systems are independent

(ii) Each knowledge system specializes in one feature

(iii) Each feature may have several knowledge systems assigned to it.

We may not want to access all KS's and therefore, we have to solve the following problem:

The access problem: Which sets of KS's does one access? (some KS may run in parallel)

In what order does one access these sets?

We have performance parameters such as reliability, expense, response time, etc... Information

regarding these parameters are contained in special KS's called CKS's (Control Knowledge Systems).

Each CKS specializes in one performance parameter

One performance parameter may correspond to several CKS's.

Each KS has two components:

a) The observational component which reports on the value of a specific feature. It may

return a value or a probability distribution over the set of possible feature values (e.g.,

red or .8/red + .2/blue).

b) The judgemental component which reports on how likely it is that the true answer lies in

some set of possible answers given that a specific value of a feature has been observed.

7-11



We define a control strategy to be a sequence of performance parameters specifications. This

generates an access to a set of KS's. After these KS's have been used, the belief structure of the

frame of discernment is updated. Then stopping rules are looked at. If stopping criterias are not met,

we go to the next control strategy.

If all control strategies have been exhausted, a decision is made as to what the probable answer is.

Access Policy

Each control strategy is a list of performance objectives. On the l th control strategy, let Ol

denote all available KS's 01 _ 02 D ... _ Ol ... as we don't want to reuse the same KS's (we

want to have independent sources of information). The decision as to what KS's to use is made on

information contained in the CKS'$.

Each CKS has two components:

a) Component - A which decides on what are the best subsets of Ol to consider when the

value of performance objective Pj p_

i.e., If CKS!, ... CKS r.j specialize on performancej
J J

Component A computes all

represent

We define

Thus

b)

Let B COl

1 which

ifB contains any pair of KS's which can't run in parallel

_k) is non-zero only on sets of KS's that run in parallel
u jr

Component - B which makes a probabilistic judgement of what is the best value of

performance Pj. i.e., for CKSt,

a (t) = Pr Pjr j k -- p j CKS

(set of available KS's) Define

k

) .k is given by component - BHere u _k) B isgivenbycomponentAofCKS t foreachvalue pj and,.j_g(t)jt j

t for each value p_. In other words, the above expression represents how good, on the average,of CKS j

the set B is as determined by CKS !
J

We now want to mesh all the CKS for a fixed performance.

r.

n,(B CKS 1, CKS_ j) _gJ ( _)j "'" -- t=l nj B CKS
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Now to mesh all the performance parameters
r.

n (B l all the CKS involved) _9 s njt( [ _ Jt)= t=l B CKS ,... CKS.
t dt

Now look at all B COl made up of KS's that can be accessed in parallel For such B's maximize

BeI (B) - Bel(--,B)

At this point, we have picked a set of KS's to run in parallel.
• !

We now have to interrogate the KS s that are in B and update our belief structure on the frame of

discernment (and go from Ol to 0I-I )

Now we have KS ! Recall it has an observational and ajudgemental component

The judgemental component is represented by

°[1v(k}'2 Q--* 0,1
it

This represents

v k A

the degree of belief that A is the smallest set containing the right answer, _ven feature value fi ;_

The observational component returns either a single value but in more complex case, a probability

distribution. The notation:

t i KS
KSt _ 1 '"" l

means that KS's on the 1th strategy that are in the selected set B report on features il, i2, ... isl

The observational components report

(the l index refers to the I th control strategy)

Thus, we define masses (over fixed features)

(the averaged mass assigned by the judgemental component)

We now mesh over all features (determined by B, the selected set)

m l A KS l t = 1 mlt A KS t it

At the end of the L control strategy, our total information is summed by

mL(o] allKS'sinvolved ) = l_ll m l ('*I KS_,... KS_ l)

We now must deal with the decision rule of what object must be selected as a plausible answer.
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Step 1:

Let a in OQ be the element maximizing

Bel L (a) - Bel L (_a}

IfL denotes last control strategy, pick 'a'

else go to Step 2

Step 2:

a) If 8 1>0 denotes some fixed threshold

Pick 'a' if Bel (a) > 8
1

b) If 8 2>0 denotes some fixed number

Pick 'a' if Pls L (a) - Bel (a) < 8 2

c) Combined 'a' and 'b'

Ira doesn't satisfy the criterion, go to the next control strategy. The rationale for the stopping rule is

'c' is that we would like the belief in 'a' to exceed some threshold and have uncertainty relative to a

drop below some predefined level.

It is clear that much research remains to be done. For example, degradation of the information

contained in the KS's has not been considered in the last part of this report. This and additional

problems will beaddressed in future Work. Finally, for applications of the Dempster-Shafer approach

to artificial intelligence, the reader is referred to [3] and [4].
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